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1 Introduction

We have used an our novel joint segmentation and tracking algorithm which is an expansion of our method

described in [1]. We ran our method on three data sets, namely Fluo-C2DL-MSC, Fluo-N2DH-GOWT1 and

Fluo-N2DH-SIM+. The parameters set for each data set is presented in Table 1.

2 Method

2.1 Problem Formulation

Let C =
{
C(1), ..., C(K)

}
denote K cells in a time lapse microscopy sequence, containing T frames. Let It :

Ω → R+ be the t-th frame, in that sequence, where Ω defines the 2D image domain of It, and t = 1, ..., T . We

assume that each It is a gray-level image of Kt cells which form a subset of C. Our objective is twofold and

consists of both cell segmentation and frame-to-frame cell association defined as follows:

Segmentation: For every frame It, find a function ft : Ω → Lt, (where Lt is a subset of Kt + 1 integers in

[0, . . . ,K]) that assigns a label lt ∈ Lt to each pixel x = [x, y] ∈ Ω. The function ft partitions the t-th frame into

Kt + 1 regions, where each segment Γ (k)
t = {x ∈ Ω|ft (x) = lt = k, } forms a connected component of pixels, in

frame It, that belongs to either a specific cell in C or to the background, i.e. Γ (0)
t .

Association: For every frame It find an injective function ht : Lt−1 → Lt that corresponds cell segments in

frame t− 1 and frame t. As we will show in the following, the segmentation and association steps are merged

and Γ (k)
t , k ≥ 1 defines the segmentation of cell C(k) in frame t.

2.2 Time series analysis

For every cell C(k) there exist a number of properties that describe its state at a given time t. Let ξ(k)t de-

note the hidden state vector that holds the true, unknown, state of the cell. In the following discussion the

superscript (k) is removed for clarity. In our case the state vector holds the following features:

ξt = [cxt , cyt , vxt , vyt , εt]
T =

[
cTt ,v

T
t , εt

]T
(1)

where ct = [cxt , cyt ]
T denote the COM of the cell at time t and vt = [vxt , vyt ]

T denote the COM velocities.

The variable εt is the shape uncertainty variable, which will be explained in 2.3. We assume that the state



vector approximately follows a linear time step evolution as follows: ξt = Aξt−1 +wt−1, where A ∈ R5×5 is the

state transition model, and wt ∈ R5 is the process noise drawn i.i.d from N (0,Qt). In our case: Ai,i = 1, i =

1 . . . 5; A1,3 = A2,4 = 1. Since the true state is hidden, the observed state is ζt = ξt + rt, where rt ∈ R5 is

the measurement noise drawn i.i.d from N (0,Rt). The process and measurement noise covariance matrices

Qt,Rt are assumed to be known.

In order to predict the state of a cell at t we utilize the Kalman Filter [3]. The predicted (a priori) state vector

estimation and error covariance matrix at t given measurements up to time t−1 are: ξ̂t|t−1 = Aξ̂t−1|t−1; Σt|t−1 =

AΣt−1|t−1AT + QT
t

The a posteriori state estimate and error covariance matrix at time t given measurements up to and including

time t are: ξ̂t|t = Aξ̂t|t−1 +Gt
(
ζt − ξ̂t|t−1

)
; Σ = (I−Gt) Σt|t−1

where the Kalman Gain matrix is given as: Gt = Σt|t−1

(
Σt|t−1 + Rt

)−1.

2.3 Dynamic Shape model

The estimated segmentation of a cell C(k) in frame t, i.e. Γ̂ (k)

t|t−1 is obtained by a translation of the cell segmen-

tation in frame t− 1 :

Γ̂
(k)

t|t−1 =
{
x|
(
x− v̂

(k)

t|t−1

)
∈ Γ (k)

t−1

}
, where, v̂(k)

t|t−1 · 1, is the estimated cell displacement. The respective signed

distance function (SDF) φ̂(k)

t|t−1 : Ω → R is constructed as follows:

φ̂
(k)

t|t−1 (x) =


min

x′∈∂Γ̂ (k)
t|t−1

dE (x,x′) x ∈ Γ̂ (k)

t|t−1

−min
x′∈∂Γ̂ (k)

t|t−1

dE (x,x′) x /∈ Γ̂ (k)

t|t−1

(2)

where dE (·, ·) denotes the Euclidian distance and ∂Γ̂t|t−1 denotes the estimated segmentation boundary. We

define the probability that a pixel x belongs to the domain of cell k by a logistic regression function (LRF):

Φ̂
(k)

t|t−1 (x) = P
(
x ∈ Γ (k)

t

)
,

(
1 + exp

{
−
φ̂
(k)

t|t−1 (x)

ε̂
(k)

t|t−1

})−1

(3)

where, ε̂(k)t|t−1 is the estimation of ε(k)t , dH
(
∂Γ

(k)
t−1, ∂Γ

(k)
t

)
·
√
3π
2

which denotes the calculated boundary uncer-

tainty. The LRF slope is determined by ε(k)t . We set ε(k)t such that the standard deviation of the probability

density function (PDF) corresponding to P
(
x ∈ Γ (k)

t

)
is equal to the Hausdorff distance between the aligned

cell boundaries i.e. dH
(
∂Γ

(k)
t−1, ∂Γ

(k)
t

)
. Note, that large temporal fluctuations in a cell boundary, increase dH ,

which in turn smooth the LRF slope and increase the shape uncertainty. Eq.3 defines our dynamic shape

model.

2.4 MAP Segmentation and Association
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We now present the flow of the proposed segmentation algorithm given the state vector estimation ξ̂t|t−1 and

cell segmentation of the previous frame. Consider the image It with c
(k)
t . We model the PDFs of the foreground

and background intensities, fFG (·) and fBG (·) respectively by a mixture of Gaussians. The intensity based

probability of being a cell or background is defined as follows:

P
(BG)
t (x) =

αfBG (It (x))

αfBG (It (x)) + (1− α) fFG (It (x))
; P

(FG)
t (x) = 1− P (BG)

t (x) (4)

where 0 < α < 1 is a predetermined weight.

For each cell segment, in frame t, we construct a DSM, Φ̂(k)

t|t−1, as explained in 2.3. We use the FM algorithm [2]

to find the shortest path from each pixel x to the estimated COM of a cell k s.t. a speed image Ŝ(k)

t|t−1 : Ω → [0, 1]

. The FM distance, dFM
(
x, ĉ

(k)
t|t−1|Ŝ

(k)

t|t−1

)
, is the minimal geodesic distance from x to ĉ

(k)
t|t−1 . In other words,

the value of Ŝ(k)

t|t−1(x) is the speed of a pixel x along the shortest path to ĉ
(k)
t|t−1. For each pixel x in frame t we

define its speed Ŝ(k)

t|t−1(x) as the product of three terms: 1. The intensity based probability of belonging to the

foreground (Eq.4). 2. The spatial prior of being part of a specific cell i.e. the DSM (Eq.3). 3. The “traversability”

which is inverse proportional to the image edges in frame It and defined by g (∇xIt) =
(

1 + |∇xIt|
‖∇xIt‖2

)−2

:

Ŝ
(k)

t|t−1 = P
(FG)
t · Φ̂(k)

t|t−1 · g (∇xIt) (5)

The absolute value of the spatial gradient, i.e. |∇xIt|, can be interpreted as “speed bumps” which make the

“FM journey” more difficult across edges.

The posterior probability that x belongs to Ck is inverse proportional1 to the difference between its geodesic

and Euclidean distances to ĉ
(k)
t|t−1 (Fig.

P
(k)
t (x) ∝

(
dFM

(
x, ĉ

(k)

t|t−1|Ŝ
(k)

t|t−1,
)
− dE

(
x, ĉ

(k)

t|t−1

)
+ 1
)−1

(6)

The final segmentation is given as the MAP of (6):

Γ
(k)
t =

{
x| arg maxk′∈Lt P

(k′)
t (x) = k

}
. In fact, we see that cell association is inherent to the defined seg-

mentation problem, since each cell is segmented using its estimated properties from the previous frame. We

disregarded cells with sizes smaller or larger than predefined thresholds Tmin and Tmax respectively. A

mitosis was defined when a given cell was split into more than one connected component.

3 Parameters:

1 P
(k)
t (x) is normalized such that

∑
k′ P

(k′)
t (x) = 1
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Data Set Seq α Tmin Tmax PatchSize GMM

Fluo-C2DL-MSC 01 0.9 1000 50000 800 TRUE
02 0.75 2500 250000 inf TRUE

Fluo-N2DH-GOWT1 01 0.1 1000 100000 150 TRUE
02 0.5 1000 100000 150 TRUE

Fluo-N2DH-SIM+ 01 0.15 500 50000 150 FALSE
02 0.8 300 30000 150 FALSE

Table 1. Parameters Table
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